
Math 250A Lecture 24 Notes

Daniel Raban

November 21, 2017

1 Norm and Trace

1.1 Norm and trace of finitely generated extensions

Let L/K be a field extension. The norm and the trace satisfy

N(ab) = N(a)N(b)

tr(a+ b) = tr(a) + tr(b),

so we can think of the norm and trace as homomorphisms L∗ → K∗ under × and L→ K
under +, respectively.

Suppose a generates L/K (L = K(a)). a satisfies an irreducible polynomial xn +
bn−1x

n−1 + · · ·+ b0 = 0. What are the trace and norm of a? Choose a basis for L over K,
say

{
1, a, a2, . . . , an−1

}
. Then multiplying by a makes 1 7→ a, a 7→ a2, . . . . So a is given

by the matrix 

0 0 · · · 0 −b0
1 0 · · · 0 −b1

0
. . .

. . .
...

...
...

. . .
. . . 0 −bn−2

0 · · · 0 1 −bn−1

 .

The trace is −bn−1 ,and the norm is ±b0.
Suppose the polynomial has roots a = a1, a2, . . . , an in an algebraic closure of L. Then

bn−1 = a1 + · · · + an, and b0 = ±a1 . . . an. So the trace is the sum of the roots of the
polynomial, and the norm is the product of the roots.

Example 1.1. In C/R, we have
tr(z) = z + z̄

N(z) = zz̄.
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Suppose we have K ⊆ K(a) ⊆ L. Then N(a) in L is (N(a)(in K(a)))[L:K(a)] and tr(a)
in L is (tr(a)(in K(a))) · [L : K(a)] (exercise).

Suppose L : K is Galois with group G, then other roots are given by σi(a) for σ ∈ G,
so

N(a) =
∏
σ∈G

σ(a),

tr(a) =
∑
σ∈G

σ(a).

1.2 The integers of a quadratic field

Recall that Q[
√
−3] contains the ring Z[

√
−3], which is not a UFD since 4 = 2 × 2 =

(1 +
√
−3)(1 −

√
3). It is also contained in Z[

√
−3+1
2 ], the Eisenstein integers, which is a

UFD.
Given a field L containing Q, what is a “nice” ring in it? The answer is that this is the

ring of algebraic integers in K.

Definition 1.1. The ring of algebraic integers in K is the ring of elements in a field K/Q
that are roots of polynomials in Z[x] with leading coefficient 1.

Proposition 1.1. Let L/Q be a finite extension. Then for α ∈ L, the following are
equivalent:

1. α is algebraically independent (root of xn + · · · = 0).

2. We can find a finitely generated Z-module A in L spanning L so that αA ⊆ A.

Proof. (1) =⇒ (2): Take A to be spanned by 1, α, α2, . . . , an−1. Then ααn−1 is a linear
combination of 1, α, α2, . . . , an−1.

(2) =⇒ (1): α is a linear transformation of a free Z-module A. α is a root of its
characteristic polynomial, which has leading coefficient 1 and other roots in Z.

Suppose L = Q(
√
N), where N is a squarefree integer. We want to find the algebraic

integers in L. The easiest examples are m + n
√
N , for m,n ∈ Z. Sometimes, there are

others, such as
√
3+1
2 . The key point is that if α is an algebraic integer, so are tr(α) and

N(α). So tr(α), N(α) ∈ Z.

What are the norm and trace of m + n
√
N? Choose the basis

{
1,
√
N
}

for L/Q.

Multiplying by m makes 1 7→ m and
√
N 7→ m

√
N , and multiplying by n

√
N makes

1 7→ n
√
N and

√
N 7→ nN . So we get the matrix[

m nN
n m

]
.
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These must be in Z. 2m ∈ Z makes m ∈ Z, so m2−n2 ∈ Z. So n ∈ Z, as n is squarefree.
The other case is that m ∈ Z + 1/2, so m2 = k + 1/4. We need m2 − nN ∈ Z, which is
1/4 − 4n2 ∈ Z. So 1 ≡ (2n)2N (mod 4). If N ≡ 2, 3 (mod 4), we have no solutions. So
we must have N ≡ 1 (mod 4). The integerrs of Q(

√
N) are given by Z[

√
N ] if n ≡ 2, 3

(mod 4), and Z[1+
√
N

2 ] if n ≡ 1 (mod 4).
The trace gives us a bilinear form on L/K with (a, b) = tr(ab). This is either 0 or

nondegenerate.

Example 1.2. Here is an example when (·, ·) is zero. Let K − Fp(t
p) and L = Fp(t).

K ⊆ L and this is an inseparable extension. Any element of L is the root of an equation of
the form xp − a for a ∈ K, where the coefficient of xp−1 = 0. This coefficient in the trace,
so the trace is always 0.

For separable extensions L/K, the trace is not identically 0. This is trivial in charac-
teristic 0 because tr(1) = [L : k] 6= 0.

Definition 1.2. A character of a group G is a homomorphism from G → K∗ (a “1-
dimensional representation” of G).

Lemma 1.1 (Artin). Suppose G is a group (or monoid) and K is a field. If χ1, χ2, . . . , χn
are distinct characters, they are linearly independent; i.e. if

a1χ1(g) + a2χ2(g) + · · ·+ anχn(g) = 0

for all g ∈ G, then a1 = a2 = · · · = an = 0.

Proof. Suppose a1χ1(g) + a2χ2(g) + · · · + anχn(g) = 0 for all g. Pick all ai to be not all
zero and n to be as small as possible. Since χ1 6= χ2, pick h ∈ G with χ1(h) 6= χ2(h). Then

a1χ1(gh) + a2χ2(gh) + · · ·+ anχn(gh) = 0

for all g, which means that

a1χ1(g)χ1(h) + a2χ2(g)χ2(h) + · · ·+ anχn(g)χn(h) = 0.

If we multiply the original relation by χ1(h), we get

a1χ1(g)χ1(h) + a2χ2(g)χ1(h) + · · ·+ anχn(g)χ1(h) = 0

If we subtract these two equations, we get

a2(χ1(h)− χ2(h))χ2(g) + a3(χ1(h)− χ3(h))χ3(g) + · · ·+ an(χ1(h)− χn(h))χn(g) = 0.

Note that χ1(h) − χ2(h) 6= 0. So we have a smaller nonzero linear relation between
χ1, . . . , χn, which is a contradiction since we chose n to be as small as possible.
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Proposition 1.2. For a Galois extension L/K, the trace is not identically zero.

Proof. We have that the trace is tr(a) = σ1(a) + σ2(a) + · · · + σn(a) with σi ∈ G. If
tr(a) = 0 for all a, we have a linear relation between σ1, . . . , σn. This is not possible by
Artin’s lemma. So tr(a) 6= 0 for some a. Separable extensions are similar and we leave
that case as an exercise.

1.3 Discriminant of a field extension L/K

Definition 1.3. The discriminant of L/K is the discriminant of the bilinear form (a, b) =
tr(ab) on the vector space L.

Choose a basis {a1, . . . , an} for L over K. The discriminant is det(B), where Bi,j =
(ai, aj). This depends on the choice of basis. If {b1, . . . , bn} is another basis, then some
matrix times A gives a change of basis from a1, . . . , an to b1, . . . , bn. The discriminant for
the bases is the discriminant for b1, . . . , bn times the determinant of A. So the discriminant
is well-defined up to multiplication by squares of K. So disc(L/K) ∈ K∗/(K∗)2.

Example 1.3. Suppose L = K(a). What is the discriminant of L/K? The element a is a
root of some irreducible polynomial p(a). Choose the basis 1, a, a2, . . . , an−1 of L/K. The
discriminant is equal to the determinant of

tr(1) tr(a) tr(a2) · · · tr(an−1)

tr(a) tr(a2)
. . .

...
...


Assume L/K is Galois for simplicity. Then tr(ak) =

∑
σ∈G σ(ak), so we get

∑
σ(1 · 1)

∑
σ(1 · a)

∑
σ(1 · a2) · · · tr(an−1)∑

σ(1 · a)
∑
σ(1 · a2)

. . .
...

...


This is the product of the matrices

σ1(1) σ2(1) σ3(1) · · · σn(1)

σ1(a) σ2(a)
. . .

...
...



σ1(1) σ1(a) σ1(a

2) · · · σ1(a
n−1)

σ2(1) σ2(a)
. . .

...
...


which are transposes of each other.
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Recall the Vandemonde determinant

det


1 1 1 · · · 1
a b c · · ·
a2 b2 c2 · · ·
...

...
...

. . .

an−1 bn−1 cn−1 · · ·

 = ±(a− b)(a− c)(a− d)(a− e) · · · (b− c)(b− a) · · · ,

which is the product of the differences of different variables (where each difference is only
counted once). These are equal because the degrees are the same, and the left side is
divisible by a− b (and other terms) as if a = b, the the first two columns are the same. So
they differ up to a constant, which is 1.

So the discriminant is the square of the determinant ∆ = ±
∏
i<j(σi(a) − σj(a)). So

∆2 is the discriminant of the polynomial p(x). This means that the discriminant of the
field extension is just the discriminant of the irreducible polynomial of a.

1.4 Applications of the discriminant of a field extension

Example 1.4. Look at the fields Q[x]/(x2+x+1), Q[x]/(x3−x−1), and Q[x]/(x3−x+1).
Which are isomorphic? The discriminants are −31, −31, and −23; remember to think of
these as elements of Q∗/(Q∗)2. The third differs from the first two; −23/ − 31 is not a
square in Q∗. The first two fields are isomorphic; change x to −x.

Example 1.5. Let’s find algebraic integers in L = Q(α), where α2 + α + 1 = 0. Look at
the discriminant of the basis

{
1, α, α2

}
. The discriminant is −31. Let A be the Z-linear

span of 1, α, α2. Suppose B is the set of all algebraic integers. So A ⊆ B. disc(B) =
disc(A) × det(x)2, where x is the matrix taking the basis of A to the basis of B. The
determinant is the order of the group B/A. Now note that −31 is squarefree. Then
det(x) = 1, so B = A.

Example 1.6. Take Q(
√
−3) , so α =

√
−3 and α3 + 3 = 0. This has discriminant −12,

which is not squarefree. We have Z[α] ( Z[
√
−3+1
2 ], so you have to do more work.

Recall that the norm is a homomorphism L∗ → K∗. What are the kernel and the image
of this map? These can be quite complicated.

Example 1.7. Look at N : C∗ → R∗ given by N(z) = |z|2 = zz̄. The image is the positive
reals.

Example 1.8. Look at N : Q(i)∗ → Q∗ given by a+ bi 7→ a2 + b2. The image of the norm
is the rational number that are sums of 2 squares. As you can see, this gets complicated,
even in simple cases.

Theorem 1.1. If L,K are finite fields, then N : L∗ → K∗ is onto.
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Proof. Recall1 that the Galois group of L/K is cyclic, generated by the Frobenius element
x 7→ xq, where q = |K|. The Galois group is {} 1, F, F 2, . . . , Fn−1, where n = [L : K].

N(a) = aF (a)F 2(a) · · ·Fn−1(a)

= aaqaq
2 · · · aqn−1

= aq
n−1/(q−1).

So there are at most qn−1/(q − 1) elements of norm 1. The image has at most q − 1
elements. The order of kernel times the order of the image is the order of L∗ (qn − 1), so
the kernel and image indeed have order qn−1/(q − 1) and q − 1, respectively.

What is the kernel of N : L → K? Hilbert showed that if L/K is a cyclic extension
generated by σ, then N(a) = 1 iff a = σ(b)/b for some b ∈ L∗.

1Maybe we should put “recall” instead. Professor Borcherds is unsure whether he actually remembered
to introduce this when we went over finite fields.
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